
Comirit: Commonsense Reasoning
by Integrating Simulation and Logic

Benjamin JOHNSTON and Mary-Anne WILLIAMS
Faculty of Information Technology, University of Technology, Sydney, Australia

Abstract. Rich computer simulations or quantitative models can enable an agent
to realistically predict real-world behavior with precision and performance that is
difficult to emulate in logical formalisms. Unfortunately, such simulations lack the
deductive flexibility of techniques such as formal logics and so do not find natural
application in the deductive machinery of commonsense or general purpose reason-
ing systems. This dilemma can, however, be resolved via a hybrid architecture that
combines tableaux-based reasoning with a framework for generic simulation based
on the concept of ‘molecular’ models. This combination exploits the complementary
strengths of logic and simulation, allowing an agent to build and reason with auto-
matically constructed simulations in a problem-sensitive manner.

Keywords. Commonsense reasoning, simulation, tableaux methods

Introduction

Comirit is the name of both a software system and a corresponding research project that
seeks to enhance robotic and software agents with commonsense awareness and reason-
ing capabilities. The Comirit project is exploring the feasibility of rapidly constructing
intelligent systems from existing technologies—that is, Comirit is a response to the chal-
lenge of engineering commonsense-enabled systems from scratch, on minimal budgets
and in short time-frames. The objective of this paper is to introduce the core integrative
architecture of Comirit, in the context of the inspiration of the architecture: the problem
of integrating simulation and logic. While the objective of Comirit is nominally common-
sense reasoning, the project has clear connections to artificial general intelligence and this
project is intended as the first in a series of efforts aiming to pragmatically engineer, within
a resource-constrained context, systems that are capable of increasingly more general rea-
soning and learning.

We see an opportunity in identifying well-established and robust techniques within
computer science and integrating these in novel combinations that, in harmony, afford
powerful new modes of reasoning. In particular, our early efforts have primarily focused
on the compatibility of simulation and logical reasoning:

1. While simulations and computer games do not, in themselves, demonstrate com-
monsense intelligence or enable complex reasoning, they do provide extremely
rich and realistic models of ‘commonsense’ scenarios and behavior.

2. Computable expressive logics, in contrast, allow for flexible and powerful modes
of reasoning, but lack the rich models of commonsense situations often found in
simulations.

The intent of combining these two methods is to unite the flexibility and power of expres-
sive logics with the richness of simulation, and ideally to do so in a way that remains open

to later inclusion of other forms of reasoning.
It turns out that tableaux approaches to automated reasoning provide an effective basis

for successful integration of logic and simulation. Tableaux systems are constructive meth-
ods for finding contradictions—they attempt to find possible models or worlds in which a
logical formula is inconsistent. It is these worlds that form the crux of integration: rather
than merely limiting the tableaux search to worlds that lead to logical inconsistency, these
possible worlds can also be tested for inconsistency under simulation (or, in fact, inconsis-
tency under a wide range of techniques).

Unfortunately, the technicalities of implementing such an integrated system can over-
whelm the simplicity of this idea. In this paper we describe a strategy for managing this
complexity: we generalize the basic principles of tableaux systems so that a branch of the
tableaux can contain not just logical terms but also simulation data, notes, functions and
even the tableaux expansion rules.

 In the following two sections (Section 2 and Section 3), we comprehensively moti-
vate the architecture and briefly review the preliminaries. We then describe the conceptual
details of the architecture in Section 4. In Section 5 we describe our experiences with the
prototypes that we have built, concluding with a brief discussion of future directions in
Section 6.

1. Background

While our objective is commonsense intelligence, we do not intend to belabor the philo-
sophical question of what precisely is meant by ‘commonsense’ or ‘intelligence’. General-
ly speaking, our intent is to develop software and robotic agents with sufficient know-how
to appropriately respond to novel problems caused by the open-ended constraints of the
real-world. That is, our emphasis is not on capturing commonly known factual knowledge
(“Who is the Queen of England?”), but to create systems with real-world ‘know-how’
(“How can I safely rescue this person?”).

In lieu of a rigorous definition of commonsense intelligence, we make use of bench-
mark problems and analyze system performance in applied situations to evaluate and mo-
tivate our work. Morgenstern [1] provides a range of commonsense benchmark problems,
contributed by many researchers, that involve naïve or commonsense knowledge about
matters including planning, physics and psychology. While many of these ‘challenge prob-
lems’ require general purpose problem solving skills, they are presented within restricted
domains and with only moderate complexity such that they are useful for benchmarking
formalisms, theories and components (as opposed to entire systems). Entire systems may
be benchmarked in realistic open-ended scenarios such as competitions like RoboCup Res-
cue, RoboCup @ Home and the DARPA Grand Challenges. Physical and spatial reason-
ing play a significant part in all of these problems, however such problems also include
aspects of naïve human psychology, economics, game theory, agent behavior, planning and
potentially general purpose problem solving. Existing approaches to these benchmarks and
challenges tend to rely on significant human engineering: either in the form of large scale
manual knowledge elicitation (e.g., [2,3]) or by manually engineering implicit (and task
specific) commonsense ‘know-how’ into the low-level faculties of the robot architecture
(e.g., [4]). The effort required and the brittleness of these existing approaches is unaccept-
able for our purposes.

We observe, however, that modern simulations—computer games, computer anima-
tions and virtual worlds—have increasingly detailed, life-like environments that some-
times resemble the very situations described in benchmark problems. While simulations

are currently difficult to directly exploit as a resource for commonsense reasoning, they
do present a rich resource of implicit commonsense ‘know-how’. Some projects have at-
tempted to exploit this resource indirectly [5]—placing an agent within a simulated envi-
ronment to explore and learn about human settings free of the wear, cost, time and con-
currency constraints of the real world. Such approaches are interesting, but are limited by
progress in machine learning and the ability to automatically represent, generalize and
specialize knowledge acquired from simulated experiences. In contrast, our initial objec-
tive is to directly exploit simulation as a representation and reasoning mechanism (rather
than merely as a training environment).

Of course, with (typically) only a forward mode of reasoning and many critical limita-
tions, simulations are not immediately useful as a mechanism for commonsense reasoning.
However, in combination with a suitable automatic reasoning system for an expressive
logic, these limitations can be avoided. Proof search facilities can be used to reverse the
natural ‘arrow of time’ by postulating possible causes and then simulating to test whether
the outcomes match observations. Such proof search facilities can also be expanded to
generate the necessary detail to allow partially defined and unground objects to be numeri-
cally simulated, and search facilities may even be used to manage the process of convert-
ing symbolic scene descriptions into numerical simulations. Furthermore, the reasoning
system can solve those sub-problems that are poorly suited to encoding in simulations,
such as abstract logical deduction and random-access recall of simple factual data.

In principle, if we are integrating simulation and logic, we have many options for the
choice of underlying technologies; the selection of which can have a dramatic influence
on the capabilities and ease of integration of the complete hybrid system. Although it is
entirely possible (and effective) to simultaneously use a range of simulation engines in
the pluggable hybrid architecture we are proposing in this paper, our preference is for a
single simulation platform with sufficient flexibility to model the vast range of scenarios
that an agent may encounter. The Slick architecture [6]—a ‘molecular’ or ‘ball-and-stick’
approach to simulating a wide range of physical and non-physical phenomena—suits this
criteria and has, in fact, been designed specifically for commonsense reasoning. Similarly,
successful integration requires a reasoning mechanism that is efficient and flexible and that
provides suitable ‘scaffolding’ upon which other methodologies may be added. Tableaux
based reasoning systems are ideal in this regard: they have demonstrated efficiency as
the basis of modern Semantic Web reasoners [7], and their search strategy is based on the
construction of counter-models or counter-worlds to which simulations can be attached.
The following section includes a brief review of both Slick simulation and tableaux based
reasoning in the context of hybrid commonsense reasoning.

2. Preliminaries

2.1. Slick Simulation

The Slick architecture [6] is a general purpose approach to simulation designed for com-
monsense reasoning systems (for related approaches see [8,9]). Slick is designed for simu-
lating a wide range of phenomena including domains as diverse as physical solids and
liquids, naïve psychology and economic behavior. In Slick, the state of a simulation is rep-
resented as a hypergraph in which every vertex and hyperedge is annotated with a frame.
A set of functions perform iterative stepwise update to the state of the simulation during

each tick of a global, adaptive1 clock. With appropriate update functions and annotations,
Slick can be applied to any environment where global behavior is governed by or can be
predicted by local laws or rationality assumptions. For example, in the case of physical
environments: the hypergraph is structured to approximate the shape of physical objects;
annotations are used to describe the local physical properties of the object (the position
of vertex, local weight density, local temperature, appearance, etc.); and update rules cor-
respond to discrete-time variants of the laws of Newtonian mechanics. Consider Figure 1
as an example of how Slick might be used to represent a cup of coffee.

Note that this method of simulation is characteristically non-symbolic. We do not need
to specify how a cup of coffee behaves, but derive its behavior from the interactions and
forces that occur over the simplified ‘molecular’ structure. That is, macroscopic properties
and behaviors emerge from simple microscopic update rules, simplifying the knowledge
engineering process and maximizing the generality of the technique.

We have previously demonstrated [6] how this simple architecture can be implement-
ed in a concrete system and applied to established benchmark problems such as the Egg
Cracking problem [10]. A concrete implementation of the Slick architecture includes the
following three critical classes/types:

1. Entity. An annotated vertex with operations for vertex-specific parameters to
be stored and retrieved by attribute name.

2. Join. An annotated hyperedge (with a set of end vertices) with operations for
hyperedge-specific parameters to be stored and retrieved by attribute name.

3. Constraint. A stepwise simulation update function that queries the current
simulation hypergraph and updates the annotations, in addition to possibly fork-
ing the simulation or invalidating the simulation if either multiple or no valid
future-states exist.

The Slick architecture, as originally proposed, also incorporates a control language for
instantiating and manipulating simulations, in addition to a database mechanism that stores
generic models for instantiation and manages the relationship between abstract symbols
and the simulation hyper-graph. These not only enable the integration of simulation and
symbolic methods, but allow for simulations to be automatically constructed from purely
symbolic queries. We will see in Section 3 that while the database and control language
remain essential in a hybrid architecture, they are subsumed and generalized by the use of
expressive logics.

2.2. Tableaux Reasoning

The method of analytic tableaux is an approach to automatically proving (or disproving)
the truth of a logical statement by searching for models or worlds in which the negation of
the logical statement is satisfiable. The technique is over 50 years old but has experienced

1 Clock rate is variable and adapts to ensure numerical precision remains within acceptable bounds.

Figure 1. Sample Entity, Join and Constraint illustrating the frame-like data structures of a Slick simulation.

Entity id:#37
x: 3.452 y: 0.671 z: 6.332 mass-density: 2.1
rigidity: 51 type: {matter, solid, porcelain}

Join id:#189 connecting Entities: {id#56, id#57}
broken: false flex: 3% spring-constant: 9000
type: {matter, solid, porcelain}

Constraint id:#5
name: gravity applies-to: Entity target-type: {matter}
function: z := z + ½  g  (t)²

a recent surge in interest because of its applicability to modal logics, description logics
and Semantic Web reasoning. A thorough overview of the method and applications to rea-
soning with propositional, first order, modal, description and other logics can be found in
D’Agostino et al.’s (eds) handbook [11] or other standard references for formal computer
science. For convenience, we present a brief review of the technique for the propositional
case below.

A tableaux system is a method of proof by contradiction: it proves validity by show-
ing that the negation of a formula is unsatisfiable. The method works by updating a tree
structure whose nodes are labeled with logical formulae. The algorithm starts with a ne-
gated formula as the root of a tree and repetitively applies a set of update rules that close or
expand branches of the tree as appropriate. The basic algorithm is simple: when a branch
contains a disjunction, the branch is forked into two child branches corresponding to each
of the disjuncts; when a branch contains a conjunction, each conjunct is added to the leaf
of the branch. The effect is that a formula is converted into a tree where the parent-child
relationship can be read conjunctively and the sibling relationship can be read disjunc-
tively. Because the parent-child relationship is read conjunctively, we look along branches
(paths from the root to a leaf along the ancestor/descendent axis) for contradiction. If every
branch contains a contradiction, then there is no consistent counter-model and therefore
the original un-negated formula must be valid. The update rules of this basic algorithm are
summarized in Table 1.

The following example illustrates how the tableaux method is used to reason that
((a ∨ b) ∧ ¬a) ⇒ b is universally valid.

To show that ((a ∨ b) ∧ ¬a) ⇒ b is valid, we negate it: ¬(((a ∨ b) ∧ -a) ⇒ b), simplify
to negation normal form: (a ∨ b) ∧ ¬a ∧ ¬b, and then place it at the root of a tree. We then
attempt to show that this negated formula at the root of the tree is unsatisfiable by applying
the basic tableaux rules until all branches can be closed. Figures 2a–2c illustrate the results
of the iterative rule application.

A contradiction can be seen along the left-hand branch of the completed tableau: node
5 is an ancestor of node 6 so should be read conjunctively, however ¬a and a obviously

Table 1. Basic tableaux rules.

Rule Condition Action Explanation

R1a: {A ∧ B} → {A} (extend the branch)

R1b: {A ∧ B} → {B} (extend the branch)

R2: {A ∨ B} → {A}, {B} (fork into two child branches)

R3: {A, ¬A} → * (close the branch due to contradiction)

1 (a  b)  a  b Given

2 (a  b)  a Rule: R1a(1)

1 (a  b)  a  b Given

2 (a  b)  a Rule: R1a(1)

3 b Rule: R1b(1)

1 (a  b)  a  b Given

2 (a  b)  a Rule: R1a(1)

3 b Rule: R1b(1)

4 a  b Rule: R1a(2)

5 a Rule: R1b(2)

6 a Rule: R2(4) 8 b Rule: R2(4)

7  Rule: R3(5,6) 9  Rule: R3(3,8)

Figure 2a. Tableau after the first step (applying rule
R1a on the first node)

Figure 2b. Tableau after the second step (applying
rule R1b on the second node).

Figure 2c. Completed tableau for ((a ∨ b) ∧ ¬a) ⇒ b
(reached after eight steps).

form a contradiction. Similarly, node 3 is an ancestor of node 8 and when read conjunc-
tively, trivially forms a contradiction. All branches are contradictory and closed, therefore
the original formula is valid.

Similarly, consider the effect if we begin with a formula that is not valid, such as:
(a ∨ b) ⇒ a. We first negate it: ¬((a ∨ b) ⇒ a) ≡ (a ∨ b) ∧ ¬a, and apply the tableaux rules,
then we obtain a completed tableau per Figure 3.

A contradiction can be seen along the left-hand branch: node 3 (a) is an ancestor of
node 4 (¬a) so they should be read conjunctively, but are in contradiction. The right-hand
branch, however, remains open with neither contradictions nor the possibility of applying
a rule (without repeating). In fact, the right-hand branch (when read conjunctively) is a
counter model for our original formula: (a ∨ b) ⇒ a does not hold when we have ¬a and
b. The tableaux method is an efficient way of searching for such counter models.

We have assumed conversion into negation normal form (NNF) and the three opera-
tors ∧, ∨ and ¬. However, by extending the tableaux system with rules for NNF conver-
sion, it is possible to accept any formula of propositional logic. Through the addition of
yet further rules (and additional types of structures), a range of other operators and logics
can be supported [11].

We have provided only a brief overview, ignoring a range of issues concerning rule se-
lection, search strategy, heuristics and optimizations, quantification and modalities, cycles,
managing repeated rule application, completeness, correctness and the complexities of
undecidable logics (such as first order logic). While these matters are highly significant
in any domain, including applications for commonsense reasoning, we have not yet had
the opportunity to comprehensively consider every issue but have designed a system that
through configurability (and modularity) of tableaux rules, meta-strategies and data-types
remains agnostic to the particulars of a given tableaux algorithm. However, the critical
observation here is that tableaux systems can be made very efficient, can support a wide
range of logics and, as we will see in the following section, elegantly interface with other
forms of ‘reasoning’ such as simulation.

3. Integration

In combining simulation and logic, we hope to create a system greater than merely the
sum of its two parts. In combination, the two have the capability for a powerful union:
logic unlocks the full potential of the implicit ‘know-how’ in simulations, and simula-
tion dramatically enhances the capabilities and real-life applicability of logic. However,
in creating a hybrid system we must carefully address the mismatch between paradigms
and the inherent increase in complexity that the integration introduces. Furthermore, our
goal is to create an open-ended system that can admit other technologies and thereby de-
velop sophistication over time. Aside from our primary motivation of creating systems
with greater commonsense awareness, we are therefore guided by three important design

1 (a  b)  a Given

2 a  b Rule: R1a(1)

3 a Rule: R1b(1)

4 a Rule: R2(2) 6 b Rule: R2(2)

5  Rule: R3(3,4)

Figure 3. Completed tableau for (a ∨ b) ⇒ a.

objectives: cohesion, simplicity and open-endedness. Cohesion is achieved by using a well
defined interface between tableau reasoning and simulation, described in Section 3.1. This
interface is implemented using highly regularized data-structures, described in Section 3.2,
that maximize simplicity and open-endedness.

3.1. Tableaux-Simulation Interface

Clear semantics assist in maximizing the cohesion in the integration of simulation and
tableaux based reasoning. Without a clear and unifying abstraction, the mapping between
paradigms can be highly convoluted, requiring complex ad-hoc code to monitor, analyze
and translate data-structures and data-updates between representations. Instead, a single,
well-defined coupling is preferred, such as with the concept of possible worlds.

Both simulation and tableaux reasoning can be seen as processes concerned with di-
viding and subsequently ‘closing’ the space of possible worlds. In tableaux-based rea-
soning systems, broad regions of the space of possible worlds are divided and closed by
restrictions with logical prepositions. Simulations, in contrast, work only on narrowly
defined spaces of possible worlds, but also ultimately divide and ‘close’. This correspon-
dence forms the basis of our integration strategy, and is more clearly illustrated by way of
example. Consider the following problem:

A commonsense enabled real-estate matching system knows that John values his
time but doesn’t have a car: he cycles or catches a bus depending on the weather.
A convenient home is less than 15 minutes by bus (60km/hour) and by bicycle
(12km/hour) from his workplace. We want to know whether a home 3km from
work or 4km by the bus’s circuitous route is convenient.

We assume a hybrid system, constructed from simplified components:
• A tableaux reasoner using rules for unquantified predicate logic, equality (=),

simple relations of order (<,≤) and a rule for expanding a predicate from its defi-
nition (≡).

• A simple numerical ‘simulation’ of the process of commuting to work via dif-
ferent mechanisms. For illustrative purposes we use the highly simplified and
abstracted simulation of Figure 4.

In the context of this system, we might then encode the sample problem as the logi-
cal formula (bus ∨ bike) ⇒ conv, where bus ≡ speed=60 ∧ distance=4, where
bike ≡ speed=12 ∧ distance=3 and where conv ≡ duration≤15.

We negate the formula and convert it to negation normal form: (bus ∨ bike) ∧ ¬conv,
and apply the tableaux rules until no more rules can be applied (i.e., the tableau has
‘stalled’), resulting in the tableau of Figure 5a. Since open branches remain, we attempt
simulation: each branch is read as a narrowly defined space of possible worlds, and the
simulation engine is accordingly invoked on each branch. Doing so expands the tableaux
with the output of the simulation engine per Figure 5b.

Inputs speed, distance

Outputs duration

Algorithm set x := 60 × distance ÷ speed
return x as duration

Figure 4. Simplified simulation algorithm. Note that while highly simplified, this algorithm has similar con-
straints to real-life simulations: the inputs are assumed to be numerical and fully specified; and the algorithm

can only be used in the ‘forward’ direction (that is, it cannot be directly used to compute speed, given the
duration and distance).

Finally, we can revert back to the tableaux rules, and close both branches using the
contradictions that occur with duration in nodes 4 (duration > 15) and 7 (duration = 4)
in the left-hand branch and in nodes 4 (duration > 15) and 7 (duration = 15) in the right-
hand branch. Because all branches can be closed, we have proven the original query:
(bus ∨ bike) ⇒ conv, and have therefore shown the house to be ‘convenient’.

The general execution strategy of the Comirit hybrid system follows exactly this pro-
cess of alternating tableaux rule application and simulation. However, practical complexi-
ties are introduced by the non-determinism that we have left implicit. It is often possible
to apply both simulation and tableaux rules at any given point in time, and there may in
fact be multiple applicable tableaux rules for the tableaux system. Sophisticated heuris-
tics may be developed to guide the execution strategy—our research prototypes generate
simple cost-estimates and select based on a greedy cheapest-first strategy, but more mature
techniques such as a measure of expected benefit could be used. In the following section
we outline the generic architecture which allows for pluggable replacement of selection
strategies.

Integrating Slick simulation into this framework presents its own challenges. A Slick
simulation has potentially millions of outputs—the value of every attribute of every Entity
or Join at every point in time—including these as logical terms in the tableau would incur
significant computational and memory costs for little benefit. Instead, additional linking
Constraints are added to the Slick simulation to manage the connection between symbolic
and ‘molecular’ attributes of objects: at each tick of the clock, they calculate the state of an
object in aggregate over its ‘molecular’ representation and generate corresponding abstract
symbolic terms for inclusion in the tableau. For example, an ‘object broken’ linking Con-
straint might report that an object is broken at a given point in time if any of its Joins have
‘snapped’ at that time. Such constraints can be added to every simulation, however for
further performance gains, it suffices to use a simple strategy of only including the linking
Constraints if they appear to be relevant (that is, the Constraint is only active if its output
symbols are referenced by logical terms in the tableau). Such performance optimizations
are valid because a simulation can be restarted and executed multiple times to generate
necessary values for the tableau if a missing Constraint is later deemed to be relevant.

Finally, tableaux methods are not only applicable to true/false theorem proving—they
may be used for query answering. By allowing unification during rule application and
unground Prolog-style variables, a tableau can generate output in the form of variable
bindings. Syntactically, this is achieved by including a query term in the right-hand side
of an implication. For example, if we have a wff, F(x) that constrains the value of x, we
can discover the legal values of x by posing a query F(x) ⇒ x = X, where X is an unground

1 (bus  bike)  conv

2 bus  bike

3 conv

4 duration  15

5 bus 8 bike

6 speed  60 9 speed  12

7 distance  4 10 distance  3

11 duration  4 12 duration  15

1 (bus  bike)  conv

2 bus  bike

3 conv

4 duration  15

5 bus 8 bike

6 speed  60 9 speed  12

7 distance  4 10 distance  3

Figure 5a. Stalled tableau
Note that nodes 4, 6, 7, 9 and 10 were created by
expanding (from definition) ¬conv, bus and bike. Figure 5b. Tableau after simulation.

Prolog-style variable. When this formula is negated and converted into negation normal
form, the tableau will contain query term x ≠ X that will allow the branch to be closed by
unification of X in the contradiction rule with the true assignment for x.

3.2. Data-Structure Regularity

Combining the two reasoning strategies in a flexible hybrid system requires a large range
of data structures and therefore introduces the data management challenge of maintaining
internal and mutual consistency. A selection of some of these data structures follow:
Deductive Data Structures. Logical terms, tableaux, Slick molecular representations, da-

tabase/external-procedure backed predicates.
Strategic Data Structures. Heuristic information and scores, search queues, work

queues.
Supportive Data Structures. Cached data, indexes.
Configuration Data. Currently active heuristics, tableau rules, simulation ‘laws’, meta-

strategy.
A systematic approach is required, and this can be found by applying object oriented de-
sign principles and through the unification of all reasoner state into a single repository.

We generalize the unit of integration—a space of worlds—into a collection object.
This collection, known as a WorldSpace, corresponds to both a branch of a tableau and
an instance of a simulation. A WorldSpace has three major operations—division (fork-
ing), expansion (addition) and closure—corresponding to the tableau operations for dis-
junction, conjunction and contradiction. Aside from meta-strategy, all state and configura-
tion is stored within a WorldSpace.

A set of WorldSpaces are grouped into a collection known as a Problem. Each
query is initially represented by a single Problem with a single WorldSpace containing
the query formula and configuration. The system then uses tableaux rules and simulation to
reason about the WorldSpace; dividing, expanding and closing until all WorldSpaces
are closed or no further progress can be made. Aside from a list of current WorldSpaces,
the only system state stored in a Problem relates to meta-strategy: the processes of se-
lecting a focus WorldSpace and interpreting the final state of the Problem. While
focus selection has little impact on the theoretical capabilities of the hybrid system, it
has great computational significance. Focus selection drives the high-level search across
WorldSpaces. For example, a stack based focus selection strategy results in depth first
search, a queue based focus selection results in breadth first search, and a priority queue
may be used for heuristic, best-first or A*-style searching.

The key to minimizing the complexity of the system, and yet allowing significant
modularity and extensibility lies in the regularization of all state and data. Rather than stor-
ing tableau rules, heuristic scores, simulation configuration and simulation state in separate
linked data structures, they are all stored as terms in the tableau. That is, a tableau branch
(a WorldSpace) can contain not only logical terms, but a wide range of objects all imple-
mented as subclasses of the class Node. Such objects include: simulation objects such as
Entity, Join and Constraint; logical objects such as Term and Binding, dynamic
objects such as Function and Task; and book-keeping objects such as Note. In this
setting, the tableaux algorithm is generalized so that in each step a branch is searched for
not just matching logical terms, but also the appropriate rules to apply. In fact, the tableaux
algorithm is itself stored within a WorldSpace as a dynamic object—as a Function.

Reasoning within a given WorldSpace follows a simple interpretation process.
When a Node is added to a WorldSpace, the WorldSpace is searched for Functions
with matching parameter lists. These Functions are then invoked to either perform triv-

ial state updates or to generate Task objects that are in turn added to the WorldSpace.
Because Task objects also extend Node, the creation of a Task can result in a cascade of
Function calls to perform other minor state updates (such as setting priority) or create
new Tasks. When focus is eventually given to a WorldSpace, a Task (or set of Tasks)
is chosen from the WorldSpace based on the priority of the Task, and subsequently
executed. The typical execution process is illustrated in Figure 6.

A WorldSpace begins as an empty collection. It is initialized by adding (one-by-
one) an appropriate set of Functions for reasoning. The query term is then added to the
collection as a Term (extending Node), resulting in a cascade of new Tasks, that drive the
division, expansion and closure of the WorldSpace, the creation of new Nodes and in
turn the ongoing creation of new Tasks. When all Tasks have been exhausted, the system
attempts to execute any remaining ‘default’ Functions (i.e., parameterless functions),
and if they in turn are unable to make progress, the branch is deemed to have stalled (i.e.,
no further progress can be made).

Within this architecture, tableau based reasoning is implemented by a
TableauxReasonerFunction that responds to logical Terms. When a Term is added,
it is deconstructed and an appropriate division/extension action is chosen and created as a
new Task.

Simulation-based reasoning is made possible by a set of Functions that recognize
Terms that constrain the state of a simulation. If, for example, a Term stating that x isa
Coffee-Mug is inserted into a WorldSpace, then a SimulationConstructorFunction
will expand the WorldSpace with new Entitys and Joins appropriately describing
the shape of a Coffee-Mug. When no further progress can be made using other reasoning
methods, a SimulatorFunction, implemented as a ‘default’ Function is executed,
creating a new Task that will apply every Constraint object (i.e., every physical law)
in the WorldSpace to every Entity and Join in the WorldSpace. While we have not
done so, other forms of simulation can be integrated using an identical process.

A range of other reasoning modes are also possible. Some of the modes that we are
currently using are described below:

• Heuristics and prioritization are implemented by Functions that compute a cost
or expected benefit and update the priority of Tasks when either the Task is
added (i.e., before they are executed) or in response to the addition of other kinds
of objects to the WorldSpace.

• Methods of informal default reasoning are implemented in two ways: as
Functions that generate plausible extensions in response to the addition of logi-
cal terms; and ‘default’ (parameter-less) Functions that generate assumptions

Figure 6. Typical execution/interpretation process for a WorldSpace.

State Update

New Node

Find matching
Functions

Execute matching
Functions

Find matching
Functions

Execute matching
Functions

Add Node

Add Task

WorldSpace
receives focus

Find all
unexecuted Tasks

Run highest
priority Task

New Node
New Tasks

State Update

State Update

New Tasks

(Heuristics/Prioritization)

(Deduction/Simulation)

when ordinary logical deduction has stalled.
• Search within a problem space is implemented by ‘default’ Functions that gen-

erate Tasks to divide a WorldSpace into a covering set of mutually exclusive
conditions.

• Database-driven predicates and ‘abbreviated’ expressions are implemented
as Functions that respond to the addition of a Term, invoking external rou-
tines that test the new Term or generate expanded forms for addition into the
WorldSpace.

4. Results and Discussion

This architecture is the culmination of our experiences in integrating simulation and logi-
cal reasoning in novel combinations; and the only architecture in our experience that so
elegantly achieves cohesion, simplicity and open-endedness. We are currently exploring
and implementing different logics, simulation laws and heuristics to maximize the useful-
ness of the system.

The best way to illustrate the full power of this approach is through example. Consider
a simple benchmark-style challenge of a reasoning whether it is better to use a slow action
or fast action to move a cup of coffee. We can pose the problem as a logical formula (using
 as the modal ‘always’ operator):
problem ≡

((action = slow-move(x) ∨ action = fast-move(x))
∧ x isa Mug ∧ x contains Coffee ∧ y isa Table ∧ x on y

∧ standard-physics ∧ can-assume-defaults) ⇒ (¬mess ∧ ¬damage)

Alternately, we might pose the problem as a query to discover an appropriate action: (i.e.,
problem ⇒ action = A).

Given this query, the system builds a tableau with two branches corresponding to the
two possible actions. In both branches, the x isa Mug and x contains Coffee are expanded
into a set of Entitys and Joins; the standard-physics term is expanded into a set of
Constraints corresponding to the laws of physics; and the can-assume-defaults is ex-
panded into Functions that generate feasible placements, in 3D space, for objects such
as the Table and the Mug. A 3D rendering of the mid-action state of the two branches can
be seen in Figure 7.

In the right-hand branch we have a contradiction caused by the mess generated in the
simulation and the ¬mess constraint of our original query. The conclusion that our hybrid
reasoner draws is that the preferred action is to use the slow-move action on the cup of
coffee.

‘mess’ symbol generated in tableau

Branch containing term: action  slow-move(x) Branch containing term: action  fast-move(x)
Figure 7. Mid-action 3D rendering of the two tableau branches in the coffee cup action selection problem.

While this example is somewhat contrived, a great deal of generality is evident. Little
modification is required to query the feasibility of different kinds of actions, different ma-
terials or liquids or even the behaviors of entirely novel objects. The advantage of simula-
tion is that it is not necessary to perform comprehensive knowledge elicitation to describe
the behavior of every object in every situation; rather, simulation can automatically com-
pute real-world consequences simply from the physical parameters of objects. Combined
with the flexibility of logical deduction, this makes for a powerful commonsense reasoning
system.

5. Conclusion and Future Work

Though this architecture represents a first step for the Comirit project, and remains a long
way from true artificial general intelligence, our early results have demonstrated both sig-
nificant promise as a tool for commonsense reasoning and an enormous capability for ex-
tension and modularity. Reasoning in this hybrid architecture combines both the flexibility
and power of formal logics with the ease of specification and the implicit commonsense
‘know-how’ of simulations: even in our simple examples, the architecture elegantly and
efficiently solves problems that are difficult to express using other methods.

There is ample scope for future development. In the short term, we intend to explore
the potential for including new tableau rules for more efficient and different forms of
logical deduction, for including entirely new reasoning mechanisms (integrating along the
‘possible worlds’) and for developing new heuristics. Our longer term vision includes the
integration of the reasoning and simulation mechanisms with machine learning and robot
vision systems, and subsequently deploying the technology in real-world robot systems.
Given the modularity of the architecture and the generality of integration via ‘possible
worlds’, we believe that the potential is enormous.

References

[1] Morgenstern, L. & Miller, R. 2006, The Commonsense Problem Page, viewed 10 May 2006
<http://www-formal.stanford.edu/leora/commonsense/>.

[2] Barker, K., Chaudhri, V., Chaw, S., Clark, P., Fan, J., Israel, D., Mishra, S., Porter, B., Romero, P.,
Tecuci, D. & Yeh, P., 2004, ‘A question-answering system for AP chemistry: assessing KR&R technolo-
gies’, KR2004.

[3] Lenat, D.B., Guha, R.V., Pittman, K., Pratt, D. & Shepherd, M. 1990, ‘Cyc - toward Programs with
Common-Sense’, Communications of the ACM, vol. 33, no. 8, pp. 30-49.

[4] Bryson, J. 2003, ‘The behaviour-oriented design of modular agent intelligence’ in Agent Technologies,
Infrastructures, Tools and Applications for e-Services, LNCS 2592/2003.

[5] Goertzel, B. Heljakka, A., Bugaj, S. & Pennachin, M. 2006, ‘Exploring android developmental psychol-
ogy in a simulation world’, Proc. of ICCCS-2006.

[6] Johnston, B. & Williams, M-A. 2007, ‘A generic framework for approximate simulation in common-
sense reasoning systems’, 8th Int. Sym. on Logical Formalizations of Commonsense Reasoning.

[7] Horrocks, I. & Sattler, U. 2001, ‘Ontology reasoning in the SHOQ(D) description logic’, IJCAI 2001.
[8] Gardin, F. & Meltzer, B. 1989, ‘Analogical representations of naïve physics’, Artificial Intelligence, vol.

38, no. 2, pp. 139-159.
[9] Hoyes, K. 2007, ‘3D simulation: the key to AI’ in Goertzel, B. & Pennachin, C. (eds) Artificial General

Intelligence, Springer, Berlin.
[10] Morgenstern, L. 2001, ‘Mid-sized axiomatizations of common-sense problems: a case study in egg-

cracking’, Studia Logica, vol. 67, no. 3, pp. 333-384.
[11] D’Agostino, M., Gabbay, D., Hähnle, R. & Posegga J. (eds) 1999, Handbook of Tableau Methods,

Kluwer, Netherlands.

